Connect with us

Misc

Charted: The End-of-Life Recycling Rates of Select Metals

Published

on

See this visualization first on the Voronoi app.

A chart ranking the end-of-life recycling rates (EOL-RR) of commonly used metals in the economy, per 2021 data from the International Energy Agency.

Charted: The End-of-Life Recycling Rates of Select Metals

This was originally posted on our Voronoi app. Download the app for free on Apple or Android and discover incredible data-driven charts from a variety of trusted sources.

We visualize the end-of-life recycling rates (EOL-RR) of commonly used metals in the economy. Data is sourced from the International Energy Agency, last updated in 2021.

ℹ️ EOL-RR is the percentage of a material or product that is recycled or recovered at the end of its useful life, rather than being disposed of in landfills or incinerated.

Tracking recycling rates helps manage resources better and make smarter policies, guiding efforts to cut down on waste.

Ranked: The End of Life Recycling Rates of Select Metals

Gold has an 86% recycling rate according to the latest available data. Per the Boston Consulting Group, one-third of total gold supply was met through recycling between 1995–2014.

MetalEnd-of-life recycling
rate (2021)
🔍 Used In
Gold86%💍 Jewelry / Electronics
Platinum/Palladium60%🔬 Optical fibers / Dental fillings
Nickel60%🔋 Batteries / Turbine blades
Silver50%💍 Jewelry / Mirrors
Copper46%🔌 Electrical wiring / Industrial equipment
Aluminum42%✈️ Aeroplane parts / Cans
Chromium34%🍽️ Stainless steel / Leather tanning
Zinc33%🔗 Galvanizing metal / Making rubber
Cobalt32%🔋 Batteries / Turbine engines
Lithium0.5%🔋 Batteries / Pacemakers
REEs0.2%📱 Mobile phones / Hard drives

Note: Figures are rounded.

Several factors can influence metal recycling rates. According to this International Resource Panel report, metals that are used in large quantities (steel) or have a high value (gold) tend to have higher recycling rates.

However, for materials used in small quantities in complex products (rare earth elements in electronics), recycling becomes far more challenging.

Finally, a metal’s EOL-RR is strongly influenced by the least efficient link in the recycling chain, which is typically how it’s initially collected.

Learn More on the Voronoi App

If you enjoyed this post, check out Critical Materials: Where China, the EU, and the U.S. Overlap which shows how critical materials are classified within different jurisdictions.

Click for Comments

Misc

Companies with the Most Fossil Fuel and Cement CO2 Emissions

Half of the world’s total fossil fuel and cement carbon dioxide emissions in 2023 came from just 36 companies.

Published

on

Half of the world’s carbon dioxide emissions in 2023 came from just 36 companies. Here, we chart the world's biggest polluters.

Companies with the Most Fossil Fuel and Cement CO2 Emissions

This was originally posted on our Voronoi app. Download the app for free on iOS or Android and discover incredible data-driven charts from a variety of trusted sources.

Key Takeaways

  • Half of the world’s fossil fuel and cement carbon dioxide emissions in 2023 came from just 36 entities, according to a report by the Carbon Majors Project
  • If Saudi Aramco were a country, it would be the fourth-largest polluter in the world, after China, the U.S., and India.
  • Five publicly traded oil companies—ExxonMobil, Chevron, Shell, TotalEnergies, and BP—together accounted for 5% of global carbon dioxide emissions from fossil fuels.

Chinese Companies Dominate the List

This graphic is based on Carbon Majors, a database of historical production data from 180 of the world’s largest oil, gas, coal, and cement producers representing 169 active and 11 inactive entities.

In 2023, the top 20 highest carbon-producing entities were responsible for 17.5 gigatonnes of carbon dioxide equivalent (GtCO₂e) in emissions, accounting for 40.8% of global fossil fuel and cement CO₂ emissions. The list is largely dominated by state-owned companies, with 16 of the top 20 being state-controlled. Notably, eight Chinese entities contributed to 17.3% of global fossil fuel and cement CO₂ emissions in 2023.

EntityTotal emissions (MtCO2e)Global CO2 emissions (%)
1Saudi Aramco4.4%
2Coal India3.7%
3CHN Energy3.7%
4Jinneng Group2.9%
5Cement industry of China2.8%
6National Iranian Oil Company2.8%
7Gazprom2.3%
8Rosneft1.9%
9Shandong Energy1.7%
10China National Coal Group1.7%
11Abu Dhabi National Oil Company1.6%
12CNPC1.6%
13Shaanxi Coal and Chemical Industry Group1.6%
14Iraq National Oil Company1.3%
15Shanxi Coking Coal Group1.3%
16ExxonMobil1.3%
17Sonatrach1.2%
18Chevron1.1%
19Kuwait Petroleum Corp.1.0%
20Petrobras1.0%
21Shell0.9%
22Pemex0.9%
23TotalEnergies0.8%
24QatarEnergy0.8%
25Lukoil0.8%
26BP0.8%
27Glencore0.7%
28China Huaneng Group0.7%
29Luan Chemical Group0.7%
30Equinor0.7%
31Peabody Energy0.7%
32Nigerian National Petroleum Corp.0.6%
33CNOOC0.6%
34ConocoPhillips0.6%
35Eni0.6%
36Petronas0.5%

Coal continued to be the largest source of emissions in 2023, representing 41.1% of emissions in the database and continuing a steady upward trend since 2016. Coal emissions grew by 1.9% (258 megatonnes of carbon dioxide equivalent – MtCO₂e) from 2022, while cement saw the largest relative increase at 6.5% (82 MtCO₂e), driven by expanding production.

In contrast, natural gas emissions fell by 3.7% (164 MtCO₂e), and oil emissions remained stable with only a slight increase of 0.3% (73 MtCO₂e).

Learn More on the Voronoi App

To learn more about this topic, check out this graphic that shows greenhouse gas emissions by sector in 2023, according to data was compiled by the United Nations. The power sector remains the largest emissions contributor.

Continue Reading

Misc

Population Growth, Crop Production, and Fertilizer Use Since 1960

Since 1960, potash demand has outpaced both population growth and crop production.

Published

on

This visualization, created in partnership with BHP, charts the trends of population growth, crop production, and potash demand over six decades.

Population Growth, Crop Production, and Fertilizer Use Since 1960

Since 1960, the world’s demand for crops has skyrocketed, fueled by a booming population that now exceeds 8 billion, rising incomes, and expanding uses for agricultural products.

This visualization, created in partnership with BHP, charts the trends of population growth, crop production, and potash demand over six decades.

Six Decades of Growth

The relationship between population growth, crop production, and fertilizer demand is closely interconnected.

The growth rate of these three variables, however, has not been equal.

BHP’s analysis reveals that potash demand has significantly outpaced both crop production and population growth since 1960, highlighting its essential role in feeding a growing global population.

MetricCAGR (1960–2007)CAGR (2008–2023)
Population1.7%1.1%
Crop Production2.2%1.7%
Potash Fertilizer Demand2.6%3.0%

The data reveals that despite significant supply disruptions, including the collapse of the Soviet Union—a major potash-producing region—and the 2008 financial crisis, the average annual growth rate of potash demand has consistently surpassed both population growth and crop production.

The Future of Modern Agriculture

By 2050, the global population is expected to reach 9.7 billion, potentially presenting significant challenges in meeting the world’s growing food demands. Farmers are expected to face mounting pressures to produce more food on increasingly limited arable land, making innovation and sustainable practices essential to maximizing yields.

Potash—a potassium-rich mineral used to enhance soil fertility and improve crop yields—can play a pivotal role in addressing these challenges.

In fact, BHP expects global demand for potash to grow by around 70% by 2050, driven by global megatrends such as rising populations, improving living standards, changing diets, and the need to improve the productivity of existing land.

Get more potash insights in BHP’s Economic and Commodity Outlook.

Continue Reading

Subscribe

Popular