Connect with us

Electrification

Charted: Home Heating Systems in the U.S.

Published

on

Heating in US

Charted: Home Heating Systems in the U.S.

Fossil fuel combustion for the heating of commercial and residential buildings accounts for roughly 13% of annual greenhouse gas emissions in the United States.

Decarbonizing the U.S. economy requires a switch from fossil fuel-combusting heating solutions to renewable energy sources that generate electricity.

Currently, the majority of new homes in the U.S. still combust natural gas for heating through forced-air furnaces or boilers. Just like cars need to be electric, homes will need to switch to electricity-powered heating systems that use renewable energy sources.

The graphic above uses census data to break down the different heating systems and fuels that are warming the 911,000 single-family homes built in the U.S. in 2020.

Types of Home Heating Systems

Most American homes use one of the following three heating systems:

  • Forced-air Furnaces: These typically have a burner in a furnace that is fueled by natural gas. A blower forces cold air through a heat exchanger which warms it up before it flows through ducts that heat the home with air as the medium.
  • Heat Pumps: The most common type of heat pumps are air-source heat pumps, which collect hot air from outside the home and concentrate it before pumping it through ducts that heat the air inside. They are usually powered by electricity. During warmer months, heat pumps can reverse themselves to cool the home, transferring hot air from the inside to the outdoors.
  • Hot Water/Steam: These systems typically work by boiling water (or generating steam) to the appropriate temperature using gas and sending it through a home’s pipes to radiators that heat the air.

How Home Heating Fuels Have Changed

U.S. home heating has been going through a transition over the last two decades. Electricity has steadily been replacing gas and biofuel/wood-powered home heating systems for new homes, and powers almost half of the heating systems in single-family homes built in 2020.

Here’s how the share of heat sources for new houses changed between 2000 and 2020:

Fuel2000 % of Heating for New Homes2020 % of Heating for New Homes
Gas70%55%
Electricity27%45%
Other4%1%

Percentages may not add to 100 due to rounding.

While electricity’s share has grown since 2000, most American homes are still heated with gas largely because of the fossil fuel’s affordability.

According to the U.S. Energy Information Administration (EIA), households relying on gas for space heating are expected to spend an average of $746 over the winter months, compared to $1,268 for electricity, and $1,734 for heating oil.

Heating in Newly-Built Houses Today

Of the 911,000 new single-family homes, 538,000 houses installed forced-air furnaces. Of these, 83% or nearly 450,000 homes used gas as the primary heating source, with 16% opting for electrified furnaces. By contrast, 88% of the 353,000 homes that installed heat pumps relied on electricity.

Here’s how the heating systems and fuels break down for single-family homes built in 2020:

System UsedHouses Built in 2020% Powered by Gas% Powered by Electricity% Powered by Other
Forced-Air Furnace538,00083%16%<0.5%
Heat Pump353,00012%88%0%
Hot Water/Steam8,00089%5%7%
Other/None12,00012%41%47%

Percentages may not add to 100 due to rounding.

Fewer than 1% of new single-family homes used hot water or steam systems, and the majority of those that did relied on gas as the primary fuel. Around 1.3% of new homes used other systems like electric baseboard heaters, smaller space heaters, panel heaters, or radiators.

While gas remains the dominant heating source today, efforts to decarbonize the U.S. economy could further prompt a shift towards electricity-based heating systems, with electric heat pumps likely taking up a larger piece of the pie.

Click for Comments

Electrification

Will Direct Lithium Extraction Disrupt the $90B Lithium Market?

Visual Capitalist and EnergyX explore how direct lithium extraction could disrupt the $90B lithium industry.

Published

on

Will Direct Lithium Extraction Disrupt the $90B Lithium Market?

Current lithium extraction and refinement methods are outdated, often harmful to the environment, and ultimately inefficient. So much so that by 2030, lithium demand will outstrip supply by a projected 1.42 million metric tons. But there is a solution: Direct lithium extraction (DLE).

For this graphic, we partnered with EnergyX to try to understand how DLE could help meet global lithium demands and change an industry that is critical to the clean energy transition.

The Lithium Problem

Lithium is crucial to many renewable energy technologies because it is this element that allows EV batteries to react. In fact, it’s so important that projections show the lithium industry growing from $22.2B in 2023 to nearly $90B by 2030.

But even with this incredible growth, as you can see from the table, refined lithium production will need to increase 86.5% over and above current projections.

2022 (million metric tons)2030P (million metric tons)
Lithium Carbonate Demand0.461.21
Lithium Hydroxide Demand0.181.54
Lithium Metal Demand00.22
Lithium Mineral Demand0.070.09
Total Demand0.713.06
Total Supply0.751.64

The Solution: Direct Lithium Extraction

DLE is a process that uses a combination of solvent extraction, membranes, or adsorbents to extract and then refine lithium directly from its source. LiTASTM, the proprietary DLE technology developed by EnergyX, can recover an incredible 300% more lithium per ton than existing processes, making it the perfect tool to help meet lithium demands.

Additionally, LiTASTM can refine lithium at the lowest cost per unit volume directly from brine, an essential step in meeting tomorrow’s lithium demand and manufacturing next-generation batteries, while significantly reducing the footprint left by lithium mining.

Hard Rock MiningUnderground ReservoirsDirect Lithium Extraction
Direct CO2 Emissions15,000 kg5,000 kg3.5 kg
Water Use170 m3469 m334-94 m3
Lithium Recovery Rate58%30-40%90%
Land Use464 m23124 m20.14 m2
Process TimeVariable18 months1-2 days

Providing the World with Lithium

DLE promises to disrupt the outdated lithium industry by improving lithium recovery rates and slashing emissions, helping the world meet the energy demands of tomorrow’s electric vehicles.

EnergyX is on a mission to become a worldwide leader in the sustainable energy transition using groundbreaking direct lithium extraction technology. Don’t miss your chance to join companies like GM and invest in EnergyX to transform the future of renewable energy.

Continue Reading

Electrification

Chart: The $400 Billion Lithium Battery Value Chain

In this graphic, we break down where the $400 billion lithium battery industry will generate revenue in 2030.

Published

on

EnergyX_Breaking-Down-the-Battery-Value-Chain

Breaking Down the $400 Billion Battery Value Chain

As the world transitions away from fossil fuels toward a greener future, the lithium battery industry could grow fivefold by 2030. This shift could create over $400 billion in annual revenue opportunities globally.

For this graphic, we partnered with EnergyX to determine how the battery industry could grow by 2030.

Exploring the Battery Value Chain

The lithium battery value chain has many links within it that each generate their own revenue opportunities, these include:

  • Critical Element Production: Involves the mining and refining of materials used in a battery’s construction.
  • Active materials: Creating and developing materials that react electrochemically to allow batteries to charge and discharge.
  • Battery cells: Involves the production of rechargeable elements of a battery.
  • Battery packs: Producing packs containing a series of connected battery cells. Generally, these come in two types: NMC/NMCA, the standard in North America and Europe, and LFP, the standard in China.
  • Recycling: Reusing battery components within new batteries.

But these links aren’t equal, each one is projected to generate different levels of revenue by 2030:

China 🇨🇳Europe 🇪🇺United States 🇺🇸Rest of World 🌍
Total$184B$118B$62B$39B
Critical Element Production$37B$25B$15B$8B
Active Materials$54B$31B$14B$11B
Battery Packs$34B$22B$11B$7B
Battery Cells$53B$37B$20B$11B
Recycling$6B$3B$2B$2B

On the surface, battery cell production may contribute the most revenue to the battery value chain. However, lithium production can generate margins as high as 65%, meaning lithium production has potential to yield large margins.

How Much Lithium Is Available?

Just a few countries hold 81% of the world’s viable lithium. So, supply bottlenecks could slow the growth of the lithium battery industry:

NationViable Lithium Reserves (2023)
Chile 🇨🇱9.3M t
Australia 🇦🇺6.2M t
Argentina 🇦🇷2.7M t
China 🇨🇳2M t
U.S. 🇺🇸1M t
Rest of World 🌍4.9M t

Supplying the World With Batteries

Supplying the world with lithium is critical to the battery value chain and a successful transition from fossil fuels. Players like the U.S. and the EU, with increasingly large and growing lithium needs, will need to maximize local opportunities and work together to meet demand.

EnergyX is on a mission to become a world leader in the global transition to sustainable energy, using cutting-edge direct lithium extraction to help supply the world with lithium.

Continue Reading

Subscribe

Popular