Electrification
Charted: Home Heating Systems in the U.S.
Charted: Home Heating Systems in the U.S.
Fossil fuel combustion for the heating of commercial and residential buildings accounts for roughly 13% of annual greenhouse gas emissions in the United States.
Decarbonizing the U.S. economy requires a switch from fossil fuel-combusting heating solutions to renewable energy sources that generate electricity.
Currently, the majority of new homes in the U.S. still combust natural gas for heating through forced-air furnaces or boilers. Just like cars need to be electric, homes will need to switch to electricity-powered heating systems that use renewable energy sources.
The graphic above uses census data to break down the different heating systems and fuels that are warming the 911,000 single-family homes built in the U.S. in 2020.
Types of Home Heating Systems
Most American homes use one of the following three heating systems:
- Forced-air Furnaces: These typically have a burner in a furnace that is fueled by natural gas. A blower forces cold air through a heat exchanger which warms it up before it flows through ducts that heat the home with air as the medium.
- Heat Pumps: The most common type of heat pumps are air-source heat pumps, which collect hot air from outside the home and concentrate it before pumping it through ducts that heat the air inside. They are usually powered by electricity. During warmer months, heat pumps can reverse themselves to cool the home, transferring hot air from the inside to the outdoors.
- Hot Water/Steam: These systems typically work by boiling water (or generating steam) to the appropriate temperature using gas and sending it through a home’s pipes to radiators that heat the air.
How Home Heating Fuels Have Changed
U.S. home heating has been going through a transition over the last two decades. Electricity has steadily been replacing gas and biofuel/wood-powered home heating systems for new homes, and powers almost half of the heating systems in single-family homes built in 2020.
Here’s how the share of heat sources for new houses changed between 2000 and 2020:
Fuel | 2000 % of Heating for New Homes | 2020 % of Heating for New Homes |
---|---|---|
Gas | 70% | 55% |
Electricity | 27% | 45% |
Other | 4% | 1% |
Percentages may not add to 100 due to rounding.
While electricity’s share has grown since 2000, most American homes are still heated with gas largely because of the fossil fuel’s affordability.
According to the U.S. Energy Information Administration (EIA), households relying on gas for space heating are expected to spend an average of $746 over the winter months, compared to $1,268 for electricity, and $1,734 for heating oil.
Heating in Newly-Built Houses Today
Of the 911,000 new single-family homes, 538,000 houses installed forced-air furnaces. Of these, 83% or nearly 450,000 homes used gas as the primary heating source, with 16% opting for electrified furnaces. By contrast, 88% of the 353,000 homes that installed heat pumps relied on electricity.
Here’s how the heating systems and fuels break down for single-family homes built in 2020:
System Used | Houses Built in 2020 | % Powered by Gas | % Powered by Electricity | % Powered by Other |
---|---|---|---|---|
Forced-Air Furnace | 538,000 | 83% | 16% | <0.5% |
Heat Pump | 353,000 | 12% | 88% | 0% |
Hot Water/Steam | 8,000 | 89% | 5% | 7% |
Other/None | 12,000 | 12% | 41% | 47% |
Percentages may not add to 100 due to rounding.
Fewer than 1% of new single-family homes used hot water or steam systems, and the majority of those that did relied on gas as the primary fuel. Around 1.3% of new homes used other systems like electric baseboard heaters, smaller space heaters, panel heaters, or radiators.
While gas remains the dominant heating source today, efforts to decarbonize the U.S. economy could further prompt a shift towards electricity-based heating systems, with electric heat pumps likely taking up a larger piece of the pie.
Electrification
Visualizing the Supply Deficit of Battery Minerals (2024-2034P)
A surplus of key metals is expected to shift to a major deficit within a decade.

Visualizing the Supply Deficit of Battery Minerals (2024-2034P)
The world currently produces a surplus of key battery minerals, but this is projected to shift to a significant deficit over the next 10 years.
This graphic illustrates this change, driven primarily by growing battery demand. The data comes exclusively from Benchmark Mineral Intelligence, as of November 2024.
Minerals in a Lithium-Ion Battery Cathode
Minerals make up the bulk of materials used to produce parts within the cell, ensuring the flow of electrical current:
- Lithium: Acts as the primary charge carrier, enabling energy storage and transfer within the battery.
- Cobalt: Stabilizes the cathode structure, improving battery lifespan and performance.
- Nickel: Boosts energy density, allowing batteries to store more energy.
- Manganese: Enhances thermal stability and safety, reducing overheating risks.
The cells in an average battery with a 60 kilowatt-hour (kWh) capacity—the same size used in a Chevy Bolt—contain roughly 185 kilograms of minerals.
Battery Demand Forecast
Due to the growing demand for these materials, their production and mining have increased exponentially in recent years, led by China. In this scenario, all the metals shown in the graphic currently experience a surplus.
In the long term, however, with the greater adoption of batteries and other renewable energy technologies, projections indicate that all these minerals will enter a deficit.
For example, lithium demand is expected to more than triple by 2034, resulting in a projected deficit of 572,000 tonnes of lithium carbonate equivalent (LCE). According to Benchmark analysis, the lithium industry would need over $40 billion in investment to meet demand by 2030.
Metric | Lithium (in tonnes LCE) | Nickel (in tonnes) | Cobalt (in tonnes) | Manganese (in tonnes) |
---|---|---|---|---|
2024 Demand | 1,103,000 | 3,440,000 | 230,000 | 119,000 |
2024 Surplus | 88,000 | 117,000 | 24,000 | 11,000 |
2034 Demand | 3,758,000 | 6,082,000 | 468,000 | 650,000 |
2034 Deficit | -572,000 | -839,000 | -91,000 | -307,000 |
Nickel demand, on the other hand, is expected to almost double, leading to a deficit of 839,000 tonnes by 2034. The surge in demand is attributed primarily to the rise of mid- and high-performance electric vehicles (EVs) in Western markets.
Electrification
Visualizing the EU’s Critical Minerals Gap by 2030
This graphic underscores the scale of the challenge the bloc faces in strengthening its critical mineral supply by 2030.

Visualizing EU’s Critical Minerals Gap by 2030
The European Union’s Critical Raw Material Act sets out several ambitious goals to enhance the resilience of its critical mineral supply chains.
The Act includes non-binding targets for the EU to build sufficient mining capacity so that mines within the bloc can meet 10% of its critical mineral demand.
Additionally, the Act establishes a goal for 40% of demand to be met by processing within the bloc, and 25% through recycling.
Several months after the Act’s passage in May 2024, this graphic highlights the scale of the challenge the EU aims to overcome. This data comes exclusively from Benchmark Mineral Intelligence, as of July 2024. The graphic excludes synthetic graphite.
Securing Europe’s Supply of Critical Materials
With the exception of nickel mining, none of the battery minerals deemed strategic by the EU are on track to meet these goals.
Graphite, the largest mineral component used in batteries, is of particular concern. There is no EU-mined supply of manganese ore or coke, the precursor to synthetic graphite.
By 2030, the European Union is expected to supply 16,000 tonnes of flake graphite locally, compared to the 45,000 tonnes it would need to meet the 10% mining target.
Metal | 2030 Demand (tonnes) | Mining (F) | Processing (F) | Recycling (F) | Mining Target | Processing Target | Recycling Target |
---|---|---|---|---|---|---|---|
Lithium | 459K | 29K | 46K | 25K | 46K | 184K | 115K |
Nickel | 403K | 42K | 123K | 25K | 40K | 161K | 101K |
Cobalt | 94K | 1K | 19K | 6K | 9K | 37K | 23K |
Manganese | 147K | 0K | 21K | 5K | 15K | 59K | 37K |
Flake Graphite | 453K | 16K | 17K | N/A | 45K | 86K | N/A |
The EU is also expected to mine 29,000 tonnes of LCE (lithium carbonate equivalent) compared to the 46,000 tonnes needed to meet the 10% target.
In terms of mineral processing, the bloc is expected to process 25% of its lithium requirements, 76% of nickel, 51% of cobalt, 36% of manganese, and 20% of flake graphite.
The EU is expected to recycle only 22% of its lithium needs, 25% of nickel, 26% of cobalt, and 14% of manganese. Graphite, meanwhile, is not widely recycled on a commercial scale.
-
Energy Shift3 years ago
What Are the Five Major Types of Renewable Energy?
-
Electrification2 years ago
The Six Major Types of Lithium-ion Batteries: A Visual Comparison
-
Real Assets2 years ago
Which Countries Have the Lowest Inflation?
-
Misc2 years ago
How Is Aluminum Made?
-
Electrification3 years ago
EVs vs. Gas Vehicles: What Are Cars Made Out Of?
-
Electrification2 years ago
The World’s Top 10 Lithium Mining Companies
-
Real Assets1 year ago
200 Years of Global Gold Production, by Country
-
Electrification3 years ago
Visualized: Battery Vs. Hydrogen Fuel Cell