Energy Shift
Mapped: Asia’s Biggest Sources of Electricity by Country
Mapped: Asia’s Biggest Sources of Electricity by Country
The International Energy Agency (IEA) predicts that Asia will account for half of the world’s electricity consumption by 2025, with one-third of global electricity being consumed in China.
To explore how this growing electricity demand is currently being met, the above graphic maps out Asia’s main sources of electricity by country, using data from the BP Statistical Review of World Energy and the IEA.
A Coal-Heavy Electricity Mix
Although clean energy has been picking up pace in Asia, coal currently makes up more than half of the continent’s electricity generation.
No Asian countries rely on wind, solar, or nuclear energy as their primary source of electricity, despite the combined share of these sources doubling over the last decade.
% of total electricity mix, 2011 | % of total electricity mix, 2021 | |
---|---|---|
Coal | 55% | 52% |
Natural Gas | 19% | 17% |
Hydro | 12% | 14% |
Nuclear | 5% | 5% |
Wind | 1% | 4% |
Solar | 0% | 4% |
Oil | 6% | 2% |
Biomass | 1% | 2% |
Total Electricity Generated | 9,780 terawatt-hours | 15,370 terawatt-hours |
The above comparison shows that the slight drops in the continent’s reliance on coal, natural gas, and oil in the last decade have been absorbed by wind, solar, and hydropower. The vast growth in total electricity generated, however, means that a lot more fossil fuels are being burned now (in absolute terms) than at the start of the last decade, despite their shares dropping.
Following coal, natural gas comes in second place as Asia’s most used electricity source, with most of this demand coming from the Middle East and Russia.
Zooming in: China’s Big Electricity Demand
While China accounted for just 5% of global electricity demand in 1990, it is en route to account for 33% by 2025. The country is already the largest electricity producer in the world by far, annually generating nearly double the electricity produced by the second largest electricity producer in the world, the United States.
With such a large demand, the current source of China’s electricity is worthy of consideration, as are its plans for its future electricity mix.
Currently, China is one of the 14 Asian countries that rely on coal as its primary source of electricity. In 2021, the country drew 62% of its electricity from coal, a total of 5,339 TWh of energy. To put that into perspective, this is approximately three times all of the electricity generated in India in the same year.
Following coal, the remainder of China’s electricity mix is as follows.
Source | % of total electricity mix (China, 2021) |
---|---|
Coal | 62% |
Hydropower | 15% |
Wind | 8% |
Nuclear | 5% |
Solar | 4% |
Natural Gas | 3% |
Biomass | 2% |
Despite already growing by 1.5x in the last decade, China’s demand for electricity is still growing. Recent developments in the country’s clean energy infrastructure point to most of this growth being met by renewables.
China does also have ambitious plans in place for its clean energy transition beyond the next few years. These include increasing its solar capacity by 667% between 2025 and 2060, as well as having wind as its primary source of electricity by 2060.
Asia’s Road to Clean Energy
According to the IEA, the world reached a new all-time high in power generation-related emissions in 2022, primarily as a result of the growth in fossil-fuel-generated electricity in the Asia Pacific.
With that said, these emissions are set to plateau by 2025, with a lot of the global growth in renewables and nuclear power being seen in Asia.
Currently, nuclear power is of particular interest in the continent, especially with 2022’s energy crisis highlighting the need for energy independence and security. India, for instance, is set to have an 80% growth in its nuclear electricity generation in the next two years, with Japan, South Korea, and China following suit in increasing their nuclear capacity.
The road ahead also hints at other interesting insights, specifically when it comes to hydropower in Asia. With heatwaves and droughts becoming more and more commonplace as a result of climate change, the continent may be poised to learn some lessons from Europe’s record-low hydropower generation in 2022, diverting its time and resources to other forms of clean energy, like wind and solar.
Whatever the future holds, one thing is clear: with ambitious plans already underway, Asia’s electricity mix may look significantly different within the next few decades.
Energy Shift
Visualizing the Decline of Copper Usage in EVs
Copper content in EVs has steadily decreased over the past decade, even as overall copper demand rises due to the increasing adoption of EVs.
Visualizing the Decline of Copper Usage in EVs
Copper intensity in passenger battery electric vehicles (BEVs) has steadily decreased over the last decade, driven by numerous technological advancements alongside increasing usage of alternative materials such as aluminum.
In this graphic, we visualize the evolution of copper demand in various subcomponents of passenger battery electric vehicles (BEVs) from 2015 to 2030F, along with total global copper demand driven by EVs for the same period. This data comes exclusively from Benchmark Mineral Intelligence.
Copper Intensity Per Car
According to Benchmark Mineral Intelligence, the copper intensity per vehicle is expected to decline by almost 38 kg, from 99 kg in 2015 to 62 kg by 2030.
Year | Wiring | Motor | Copper Foil | Busbar | Auxiliary Motor | Charging Cable | Total |
---|---|---|---|---|---|---|---|
2015 | 30 | 8 | 41.26 | 13.23 | 2.87 | 3.96 | 99.32 |
2016 | 29 | 8 | 38.68 | 13.37 | 2.85 | 3.92 | 95.82 |
2017 | 28 | 7 | 32.67 | 12.72 | 2.84 | 3.90 | 87.13 |
2018 | 27 | 7 | 26.39 | 11.87 | 2.82 | 3.88 | 78.96 |
2019 | 26 | 7 | 28.00 | 10.85 | 2.78 | 3.82 | 78.45 |
2020 | 25 | 7 | 24.71 | 10.24 | 2.73 | 3.76 | 73.44 |
2021 | 24 | 6 | 25.27 | 9.29 | 2.69 | 3.70 | 70.95 |
2022 | 23 | 7 | 28.44 | 8.56 | 2.65 | 3.64 | 73.29 |
2023 | 22 | 7 | 29.87 | 8.12 | 2.61 | 3.58 | 73.18 |
2024F | 21 | 7 | 27.73 | 7.67 | 2.56 | 3.52 | 69.48 |
2025F | 20 | 7 | 27.79 | 7.19 | 2.52 | 2.51 | 67.01 |
2026F | 20 | 7 | 27.78 | 6.63 | 2.48 | 3.41 | 67.30 |
2027F | 19 | 8 | 27.55 | 6.15 | 2.44 | 3.35 | 66.49 |
2028F | 18 | 8 | 26.77 | 5.70 | 2.40 | 3.30 | 64.17 |
2029F | 18 | 8 | 26.17 | 5.51 | 2.39 | 3.28 | 63.35 |
2030F | 17 | 8 | 25.63 | 5.44 | 2.37 | 3.26 | 61.70 |
One of the most significant factors driving this decline is thrifting, where engineers and manufacturers continuously improve the efficiency and performance of various components, leading to reduced copper usage. A key example of this is in battery production, where the thickness of copper foil used in battery anodes has significantly decreased.
In 2015, Benchmark estimated copper foil usage was just over 41 kg per vehicle (at an average thickness of 10 microns), but by 2030, it is projected to fall to 26 kg as manufacturers continue to adopt thinner foils.
Similarly, automotive wiring systems have become more localized, with advances in high-voltage wiring and modular integration allowing for reduced copper content in wiring harnesses.
Copper used in wiring has dropped from 30 kg per vehicle in 2015 to a projected 17 kg by 2030.
Newer, more compact power electronics and improved thermal management in motors and charging cables have also contributed to the reduction in copper usage.
Substitution has also played a role, with alternatives such as aluminum increasingly being used in components like busbars, wiring harnesses, and charging cable applications.
Aluminum’s lighter weight and lower cost have made it a practical alternative to copper in specific applications, though the additional space required to achieve the same level of conductivity can limit its use in certain cases.
Benchmark estimates that copper used in automotive wire harnesses has declined by 30% between 2015 and 2024.
The Road Ahead
Despite reductions in per-vehicle copper usage, the outlook for copper demand from the EV sector remains strong due to the sector’s growth.
Year | EV Sector Copper Demand (tonnes) |
---|---|
2015 | 56K |
2016 | 82K |
2017 | 111K |
2018 | 166K |
2019 | 179K |
2020 | 237K |
2021 | 447K |
2022 | 696K |
2023 | 902K |
2024F | 1.0M |
2025F | 1.2M |
2026F | 1.5M |
2027F | 1.7M |
2028F | 2.0M |
2029F | 2.2M |
2030F | 2.5M |
Benchmark’s analysis indicates that by 2030, copper demand driven by EVs alone will exceed 2.5 million tonnes, securing copper’s critical role in the transition to a low-carbon future.
Energy Shift
Visualizing the Rise in Global Coal Consumption
China remains the largest coal consumer, making up 56% of the global total.
Visualizing the Rise in Global Coal Consumption
This was originally posted on our Voronoi app. Download the app for free on iOS or Android and discover incredible data-driven charts from a variety of trusted sources.
Despite efforts to decarbonize the economy, global coal consumption surpassed 164 exajoules for the first time in 2023. The fossil fuel still accounts for 26% of the world’s total energy consumption.
In this graphic, we show global coal consumption by region from 1965 to 2023, based on data from the Energy Institute.
China Leads in Coal Consumption
China is by far the largest consumer of coal, accounting for 56% of the global total, with 91.94 exajoules in 2023.
It is followed by India, with 21.98 exajoules, and the U.S., with 8.20 exajoules. In 2023, India exceeded the combined consumption of Europe and North America for the first time.
Regionally, North America and Europe have seen a decline in coal consumption since the 1990s, while the Asia-Pacific region experienced a surge in demand during the same period.
Year | Asia Pacific (Exajoules) | North America | Europe | Rest of the World | Total World |
---|---|---|---|---|---|
2013 | 114.14 | 19.48 | 15.86 | 11.47 | 160.95 |
2014 | 115.74 | 19.39 | 14.88 | 11.68 | 161.62 |
2015 | 115.00 | 16.89 | 14.24 | 11.11 | 157.25 |
2016 | 113.21 | 15.55 | 13.74 | 11.35 | 153.85 |
2017 | 115.67 | 15.30 | 13.29 | 11.23 | 155.50 |
2018 | 119.05 | 14.50 | 12.98 | 11.34 | 157.87 |
2019 | 121.94 | 12.49 | 11.06 | 11.45 | 156.95 |
2020 | 121.91 | 9.97 | 9.57 | 10.82 | 152.27 |
2021 | 127.75 | 11.24 | 10.44 | 11.12 | 160.56 |
2022 | 129.80 | 10.54 | 10.02 | 11.18 | 161.53 |
2023 | 135.70 | 8.83 | 8.39 | 11.11 | 164.03 |
Coal Production on the Rise
In addition to consumption, global coal production also reached its highest-ever level in 2023, at 179 exajoules.
The Asia-Pacific region accounted for nearly 80% of global output, with activity concentrated in Australia, China, India, and Indonesia.
China alone was responsible for just over half of total global production.
Learn More on the Voronoi App
If you want to learn more about fossil fuel consumption, check out this graphic showing the top 12 countries by fossil fuel consumption in 2023.
-
Electrification2 years ago
The Key Minerals in an EV Battery
-
Energy Shift2 years ago
What Are the Five Major Types of Renewable Energy?
-
Electrification1 year ago
The Six Major Types of Lithium-ion Batteries: A Visual Comparison
-
Real Assets2 years ago
Which Countries Have the Lowest Inflation?
-
Energy Shift3 years ago
The Solar Power Duck Curve Explained
-
Misc2 years ago
How Is Aluminum Made?
-
Electrification2 years ago
EVs vs. Gas Vehicles: What Are Cars Made Out Of?
-
Electrification3 years ago
Breaking Down the Cost of an EV Battery Cell